Skip to main content

Electronic Structure of the Buried Interface Between an Organic Semiconductor, N,N′-Bis(3-methylphenyl)-N,N′-Diphenylbenzidine (TPD), and Metal Surfaces

Buy Article:

$113.00 plus tax (Refund Policy)

The electronic structures of buried interfaces between an organic semiconductor, N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD) and metal surfaces of Au, Ag, Al and Ca were examined by the new experimental method that we have developed recently. In this method the energy levels at the organic/metal interface can be examined without changing the film thickness and related physical parameters e.g., the vacuum levels of the sample in contrast to the widely-used thickness-dependent photoemission experiments. The results were discussed in view of large interfacial dipole moment of the TPD and metal (Au and Ag) contacts.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: BURIED INTERFACE; ENERGY LEVEL ALIGNMENT; ORGANIC SEMICONDUCTOR; PHOTOEMISSION SPECTROSCOPY

Document Type: Research Article

Publication date: 2012-01-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more