Skip to main content

Structural Evolution and Electronic Properties of Medium-Sized Gallium Clusters from Ab Initio Genetic Algorithm Search

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Using genetic algorithm incorporated with density functional theory, we have explored the size evolution of structural and electronic properties of neutral gallium clusters of 20–40 atoms in terms of their ground state structures, binding energies, second differences of energy, HOMO-LUMO gaps, distributions of bond length and bond angle, and electron density of states. In the size range studied, the Ga n clusters exhibit several growth patterns, and the core–shell structures become dominant from Ga31. With high point group symmetries, Ga23 and Ga36 show particularly high stability and Ga36 owns a large HOMO-LUMO gap. The atomic structures and electronic states of Ga n clusters significantly differ from the α solid but resemble β solid and liquid to certain extent.

Keywords: CLUSTER; ELECTRONIC STATE; GALLIUM; STRUCTURE

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2012.5126

Publication date: 2012-01-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more