Skip to main content

The Preparation and Characterization of Non-Covalently Functionalized Graphene

Buy Article:

$113.00 plus tax (Refund Policy)

Recently, much work has focused on the exfoliation of graphene through a combination of oxidation and sonication procedures, followed by reduction through chemical methods. We demonstrated that the individual graphene oxide sheets can be readily reduced by using phenolphthalin as both reducing agent and stabilizer. The obtained non-covalently functionalized chemically reduced graphene oxide (CRG) can be dispersed in organic solvents very well, such as alcohol, N,N-dimethylformamide, N,N-Dimethylacetamide, N-methyl-2-pyrrolidone, etc., which can give practical applications in large scale production of oil dispersible graphene and have a potential in polymer nanocomposites fabrication.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: GRAPHENE; NON-COVALENTLY FUNCTIONALIZATION; OIL DISPERSIBLE; PHENOLPHTHALIN

Document Type: Research Article

Publication date: 2012-01-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more