Skip to main content

Surface Nanomechanical Behavior of ZrN and ZrCN Films Deposited on NiTi Shape Memory Alloy by Magnetron Sputtering

Buy Article:

$105.00 plus tax (Refund Policy)

Surface nanomechanical behavior under nanoindentation of ZrN and ZrCN film on NiTi substrate was studied. The surface hardness and modulus of the films increase initially with larger nanoindentation depths and then reach their maximum values. Afterwards, they diminish gradually and finally reaching plateau values which are the composite modulus and composite hardness derived from the ZrN/ZrCN film and NiTi substrate. They are higher than those of electropolished NiTi SMA due to the properties of ZrN and ZrCN. In comparison, the surface nanomechanical properties of electropolished NiTi exhibit a different change with depths.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2011-12-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more