Skip to main content

Simulation Study on a New Dual-Material Nanowire MOS Surrounding-Gate Transistor

Buy Article:

$105.00 plus tax (Refund Policy)

In this paper, a novel field effect nanowire MOS transistor taking advantage of both dual-material gate and surrounding gate is proposed and performance characteristics are demonstrated numerically in detail. Surrounding-gate transistor is known to be used to enhance the electrostatic control of the channel, and dual-material-gate structure is extended from split-gate field effect transistor to obtain larger current and better short-channel performance. Three dimensional device simulations with Sentaurus Device are performed on this dual-material surrounding-gate transistor. Higher driving current, high ION/IOFF ratio and suppressed short-channel effects are obtained with this novel device structure.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2011-12-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more