Skip to main content

Dependence of Electrical Properties on Thermal Temperature in Nanocrystalline SnO2 Thin Films

Buy Article:

$105.00 plus tax (Refund Policy)

Nanocrystalline SnO2 thin films were prepared by pulsed laser deposition techniques on clean glass substrates, and the films were then annealed for 30 min from 50 to 550 °C with a step of 50 °C, respectively. The investigation of X-ray diffraction confirmed that the various SnO2 thin films were consisted of nanoparticles with average grain size in the range of 23.7–28.9 nm. Root-mean-square surface roughness of the as-prepared SnO2 thin film was measured to be 25.6 nm which decreases to 16.2 nm with thermal annealing. Electrical resistivity and refractive index were measured as a function of annealing temperature, and found to lie between 1.24 to 1.45 mΩ-cm, and 1.502 to 1.349, respectively. The results indicate that nearly opposite actions to root-mean-square surface roughness and electrical resistivity make a unique performance with thermal annealing temperature. The post annealing shows greater tendency to affect the structural and electrical properties of SnO2 thin films which composed of nanoparticles.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2011-12-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more