Skip to main content

Electronic Structures of Well-Aligned Er-Doped ZnO Nanorod Arrays

Buy Article:

$105.00 plus tax (Refund Policy)

Electronic structures of well-aligned Er-doped ZnO (ZnO:Er) nanorod arrays (NRAs) synthesized by a solution-based hydrothermal process were characterized by high-resolution transmission electron microscopy (HRTEM) and X-ray absorption fine structure (XAFS). HRTEM and angular dependent X-ray absorption near-edge structure analysis at O K and Zn L 3 edges indicates that the spontaneous polarization is along the [0001] direction. The analysis of Er L 3-edge XAFS demonstrates that the local structure around Er in the ZnO:Er NRAs was transformed from O h to C 4v after annealing.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2011-12-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more