Skip to main content

Reversible Ferromagnetism Study in Un-Doped ZnO Thin Films

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Room temperature ferromagnetism in pure ZnO thin films prepared by spin-coating method was observed. X-ray photoelectron spectroscopy and inductively coupled plasma-mass spectrometry showed no or extremely little presence of impurities, which were unlikely to be responsible for the large magnetization moment observed. In order to study the origin of ferromagnetism, ZnO thin films were rapidly annealed in N2 and O2 ambient in a repetitive way. Electrical and magnetic performance after each annealing was measured. It is found that ferromagnetism is diminished and re-appeared, in accordance with the decrease and increase of conductivity. Cathodoluminescence spectra show evidence of reversible variation of oxygen vacancy defect in the annealing process. These results provide strong evidence that oxygen vacancies play a significant role in inducing ferromagnetism in ZnO thin films.

Keywords: DEFECTS; FERROMAGNETISM; ZNO THIN FILM

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2011.4010

Publication date: 2011-12-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more