Skip to main content

Facile Fabrication of Si Nanowire Arrays for Solar Cell Application

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Large-area Si nanowire arrays have been fabricated on phosphorus doped Si surface by a facile silver-catalyzed chemical etching process. The solar cell incorporated with Si nanowire arrays shows a power conversion efficiency of 6.69% with an open circuit voltage of 558 mV and a short circuit current density of 25.13 mA/cm2 under AM 1.5 G illumination without using any extra antireflection layer and surface passivation technique. The high power conversion efficiency of Si nanowires based-solar cell is attributed to the low reflectance loss of Si nanowire arrays for incident sunlight. Optimization of electrical contact and phosphorus diffusion process will be critical to improve the performance of Si nanowires-based solar cell in the future.

Keywords: ANTIREFLECTION; CHEMICAL ETCHING; POWER CONVERSION EFFICIENCY; SI NANOWIRE; SILVER; SOLAR CELL

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2011.3974

Publication date: 2011-12-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more