Facile Fabrication of Si Nanowire Arrays for Solar Cell Application

Authors: Li, Xiaocheng; Tay, Beng Kang

Source: Journal of Nanoscience and Nanotechnology, Volume 11, Number 12, December 2011 , pp. 10539-10543(5)

Publisher: American Scientific Publishers

Buy & download fulltext article:


Price: $113.00 plus tax (Refund Policy)


Large-area Si nanowire arrays have been fabricated on phosphorus doped Si surface by a facile silver-catalyzed chemical etching process. The solar cell incorporated with Si nanowire arrays shows a power conversion efficiency of 6.69% with an open circuit voltage of 558 mV and a short circuit current density of 25.13 mA/cm2 under AM 1.5 G illumination without using any extra antireflection layer and surface passivation technique. The high power conversion efficiency of Si nanowires based-solar cell is attributed to the low reflectance loss of Si nanowire arrays for incident sunlight. Optimization of electrical contact and phosphorus diffusion process will be critical to improve the performance of Si nanowires-based solar cell in the future.


Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.3974

Publication date: December 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page