Skip to main content

Reassembled Graphene-Platelets Encapsulated Silicon Nanoparticles for Li-Ion Battery Anodes

Buy Article:

$105.00 plus tax (Refund Policy)

Among lithium alloy metals, silicon is an attractive candidate to replace commercial graphite anode because silicon possesses about ten times higher theoretical energy density than graphite. However, electrically nonconducting silicon undergoes a large volume changes during lithiation/delithiation reactions, which causes fast loss of storage capacity upon cycling due to electrode pulverization. To alleviate these problems, electrodes comprising Si nanoparticles (20 nm) and graphene platelets, denoted as SiGP-1 (Si = 35.5 wt%) and SiGP-2 (Si = 57.6 wt%), have been prepared with low cost materials and using easily scalable solution-dispersion methods. X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) analyses indicated that Si nanoparticles were highly dispersed and encapsulated between graphene sheets that stacked into platelets in which portions of graphite phases were reconstituted. From the galvanostatic cycling test, SiGP-1 exhibited a reversible lithiation capacity of ∼802 mAh/g with excellent capacity retention up to 30 cycles at 100 mA/g. Further cycling with a step-increase of current density (100–1,000 mA/g) up to 120 cycles revealed that it has an appreciable power capability as well, showing 520 mAh/g at 1,000 mA/g with capacity loss of 0.2–0.3% per cycle. The improved electrochemical performance is attributed to the robust electrical integrity provided by flexible graphene sheets that encapsulated dispersed Si nanopraticles and stacked into platelets with portions of reconstituted graphite phases in their structure.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2011-11-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more