Synthesis and Afterglow Properties of MgAl2O4:Eu2+, Dy3+ Nanopowders

Authors: Xu, Xuhui; Wang, Yuhua; Gong, Yu; Li, Yanqin

Source: Journal of Nanoscience and Nanotechnology, Volume 11, Number 11, November 2011 , pp. 9851-9854(4)

Publisher: American Scientific Publishers

Buy & download fulltext article:

OR

Price: $113.00 plus tax (Refund Policy)

Abstract:

The MgAl2O4:Eu2+, Dy3+ nanophosphors with different particle sizes have been synthesized through a simple and inexpensive precipitate approach followed by a post-annealing process. The structure and morphology of the phosphor are characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). According to XRD and TEM results, the particle size of MgAl2O4:Eu2+, Dy3+ could be controlled via changing the ratio of MgSO4/Al2O3, and the obtained samples possess regular morphology. The afterglow properties of MgAl2O4:Eu2+, Dy3+ nanophosphors as a function of particle sizes are investigated by afterglow decay curves. Compared with the bulk phosphor, the nanophosphors exhibit longer afterglow time and higher initial afterglow intensity. In nanophosphors, there exist numerous defects on their surfaces due to the large surface to volume ratio, which generally act as luminescent killers, while some of which, however, can probably act as traps beneficial for the generation of afterglow. In the nanosized MgAl2O4:Eu2+, Dy3+ phosphor, the thermoluminescence results indeed indicate the existence of more traps which are introduced due to the large surface to volume ratio of nanoparticles and that the high temperature sintering process contributes to the longer afterglow in the nanophosphors.

Keywords: AFTERGLOW; NANOPHOSPHOR; THERMOLUMINESCENCE; TRAP

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.5267

Publication date: November 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page