Skip to main content

Synthesis and Upconversion Luminescence of NaYF4:Yb, Tm/TiO2 Core/Shell Nanoparticles with Controllable Shell Thickness

Buy Article:

$113.00 plus tax (Refund Policy)


NaYF4:Yb, Tm/TiO2 core/shell nanoparticles were synthesized by a two-step method. First, the NaYF4:Yb, Tm nanocrystals were prepared using solvothermal technology; then, TiO2 shells were deposited on the nanocrystals by the hydrolysis of titanium ethoxide (TEOT) to form core/shell structures. By controlling the reaction time, we can adjust the thickness of TiO2 shell and thereby the weight percentage of TiO2 in the core/shell nanoparticles. The effect of shell thickness on the upconversion fluorescence of NaYF4:Yb, Tm nanocrystals was investigated in detail.


Document Type: Research Article


Publication date: 2011-11-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more