Skip to main content

Study the Formation Mechanism of Silicon Carbide Polytype by Silicon Carbide Nanobelts Sintered Under High Pressure

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

In this paper, in order to reveal the formation mechanism of SiC polytype, four SiC specimens sintered under high pressure has been investigated, after being prepared from SiC nanobelts as initial powders. The structure and morphology variation dependence of SiC specimens with temperature and pressure was studied based on experimental data obtained by XRD, SEM, and Raman. The results show that SiC lattice structure and the crystallite size are greatly affected by pressure between 2 and 4 GPa under different sintering temperatures of 800 and 1200 °C. At the largest applied pressure and temperature, 4 GPa and 1200 °C, 3C-SiC crystal structure can be changed into to R-SiC due to the stress resulted in dislocations instead of planar defects. Based on our results, the multiquantum-well structure based a single one-dimensional nanostructure can be achieved by applying high pressure at certain sintered temperature.

Keywords: HIGH PRESSURE; NANOBELT; POLYTYPE; SIC

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2011.5240

Publication date: 2011-11-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more