Skip to main content

Upconversion Emission from Yb3+ and Tm3+ Codoped NaYF4 Thin Film Prepared by Thermal Evaporation

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Yb3+ and Tm3+ codoped fluoride thin film, with intense ultraviolet and visible upconversion emissions under 980 nm excitation, has been deposited on an Al2O3 ceramic substrate by thermal evaporation under high vacuum. NaY0.835Yb0.15Tm0.015F4 bulk material synthesized by high temperature solid-state reaction was used as target in preparing the thin film. Yb3+ and Tm3+ codoped system, which had been reported before, had been studied. Compared with the unannealed thin film, the annealed film showed better upconversion emission properties, especially in the ultraviolet region, given in the normalized upconversion emission spectra, due to the structure changed from amorphous to hexagonal NaYF4 (β-NaYF4) during the annealing process. The upconversion mechanism of the thin film was also discussed in this paper.

Keywords: FLUORIDE FILM; HEXAGONAL NAYF4; THERMAL EVAPORATION

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.5256

Publication date: November 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2011/00000011/00000011/art00059
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more