Skip to main content

Terahertz Response of Ferroelectric Nanofibers

Buy Article:

$105.00 plus tax (Refund Policy)

Far-infrared optical and dielectric properties of ferroelectric SrTiO3 and BaTiO3 nanofibers, prepared by hydrothermal syntheses, were studied using terahertz time-domain spectroscopy. The power absorption, refractive index, and complex dielectric function were characterized in the frequency range from 0.2 to 1.0 THz. The measured results are well reproduced by theoretical fittings based on the dielectric models and the effective medium model. The study reveals that the low-frequency dielectric properties of the ferroelectric SrTiO3 nanofibers are associated with the lowest transverse optical (TO) soft mode TO1 at 2.70 THz (90.0 cm−1), and that of the ferroelectric BaTiO3 nanofibers are related to the lowest pair of transverse optical (TO) and longitudinal optical (LO) modes near 5.35 THz, which are both consistent with their bulk single-crystal and thin-film counterparts.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2011-11-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more