Skip to main content

Enhanced Red Upconversion Luminescence in Er–Tm Codoped NaYF4 Phosphor

Buy Article:

$105.00 plus tax (Refund Policy)

This paper presents a study on the enhanced red upconversion (UC) luminescence via efficient energy transfer (ET) between Er3+ and Tm3+ in Er–Tm codoped NaYF4 microtubes. Er doped and Er–Tm codoped NaYF4 UC hollow microtubes have been synthesized using a hydrothermal method. Under 1560 nm excitation from a diode laser, the Er doped NaYF4 microtubes emitted dominant green UC luminescence while the Er–Tm codoped NaYF4 microtubes emitted dominant red UC luminescence, which implies the energy transfer between Er3+ and Tm3+ plays a key role in the enhanced red UC emissions. The red UC luminescence is significantly enhanced compared with the green UC luminescence with the increase of Tm3+ doping concentration. In addition, our experimental results show that the UC luminescence properties under 980 nm excitation are almost identical with that under 1560 nm excitation. Furthermore, the possible ET mechanism was proposed on the basis of our experimental results.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 01 November 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more