Skip to main content

Organic Photovoltaic Devices Based on an Acceptor of Solution-Processable Functionalized Graphene

Buy Article:

$113.00 plus tax (Refund Policy)


We prepared the exfoliation of graphite, which was necessary for the production of graphene sheets that are desirable for the fabrication of nano-composites. Then a Solution-Processable Functionalized Graphene (SPFGraphene) with functionalization groups doped with P3HT hybrid thin film-based organic photovoltaic cells (OPVCs) was systematically identified using a general device structure of, ITO/PEDOT:PSS/P3HT:SPFGraphene/LiF/Al. The effect of annealing on the photoelectric properties of the SPFGraphene was analyzed by Fourier transform infrared FT-IR spectroscopy and solar cell performance. After treatment at different annealing temperatures, with an increase in the SPFGraphene content, the short-circuit current density J sc and power conversion efficiency PCE of the hybrid devices increased first, reaching the peak efficiency for the 10 wt% SPFGraphene content, and then decreased. After annealing at 160 °C, the device containing 10 wt% SPFGraphene showed the opencircuit voltage V oc of 0.73 V, the J sc value of 3.98 mA cm−2, fill factor (FF) value of 0.36, the PCE value of 1.046%. After thermal annealing at 210 °C, with the removal of the functional groups and recovery of the π-conjugated areas, the conductivity of the graphene sheet and the charge carrier-transport mobility increased greatly, the J sc value of the 10 wt% SPFGraphene content device increased to 4.2 mA cm−2, the V oc value decreased to 0.59 V, which may be attributed to the altered work-function value of the functionalized graphene and low quasi-Fermi levels for electrons and holes, the FF value was 0.27, and the PCE was 0.669%, which is lower than the former one. The results indicated that annealing at the appropriate temperature can improve the device performance greatly, and the functionalized graphene is expected to be a competitive candidate in organic photovoltaic applications because it is soluble, cheap, easily prepared, stable, and inert against the ambient conditions.


Document Type: Research Article


Publication date: November 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more