Skip to main content

Nanostructure and Internal Strain Distribution in Porous Silicon

Buy Article:

$105.00 plus tax (Refund Policy)

Porous silicon (PS) layers with different degrees of porosity have been fabricated and their nanostructure has been investigated using complementary methods as FE–SEM (field emission scanning electron microscopy), SAXS (small-angle X-ray scattering), and Raman spectroscopy. Correlation of these results with strain analyses is also required for envisaged applications in MEMS technology. Symmetrical and asymmetrical rocking curves obtained by high-resolution X-ray diffraction completed with reciprocal space maps (RSMs) explain the features observed in Raman spectra: the PS film in-depth contains two layers—bulk and highly strained superficial layer, between them being a graded strain layer.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2011-10-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more