Skip to main content

Monitoring Photonic Nanojets from Microsphere Arrays by Femtosecond Laser Ablation of Thin Films

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

By comparing finite-difference time-domain near field simulations and femtosecond laser ablation of thin films, we characterize in three dimensional-space photonic nanojets from microsphere arrays. We demonstrate periodic drilling of transparent films with thickness up to 100 nm (onto absorbing substrates) is feasible with 1-μm diameter silica spheres. Working with larger polystyrene spheres, the apparent increase of the propagation length of the photonic nanojets makes possible to drill films as thick as 500 nm. Interestingly, the lateral width of the produced craters can be maintained below 400 nm evidencing the low divergence of the nanojets. For backside illumination of the arrays, the ablation features are located at the top of the microspheres. We reveal field enhancements in and out the spheres as well as laser energy confinement at the particle substrate interface. The wide variety of features observed in the experiments open routes to fabricating nanomaterials.

Keywords: LASER ABLATION; NEAR-FIELD ENHANCEMENT; PARTICLE; SURFACE NANOSTRUCTURING

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.4295

Publication date: October 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
asp/jnn/2011/00000011/00000010/art00109
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more