Skip to main content

Nanostructuring of Ultra-Thin HfO2 Layers for High-k/III–V Device Application

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

We report on the nanopatterning by electron beam lithography (EBL) and reactive ion etching (RIE) in a SF6/Ar+ plasma of ultra-thin HfO2 films deposited on GaAs (001) substrates for gate oxide application in next generation III–V metal-oxide-semiconductor field effect transistors (MOSFETs). Characterization of the HfO2/GaAs nanostructured samples by atomic force microscopy (AFM), high-resolution scanning electron microscopy (HRSEM), energy-dispersive X-ray spectroscopy microanalysis (EDX) and transmission electron microscopy (TEM) has shown the formation of well defined HfO2 patterns with nanometre-scale linewidth control and anisotropic profiles. In addition, atomically smooth, stoichiometric and residue-free bottom GaAs etched lines with a lateral dimension of ∼50 nm have been demonstrated.

Keywords: DRY ETCHING; E-BEAM LITHOGRAPHY; HFO2/GAAS; NANOPATTERNING; TEM-EDX

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2011.3498

Publication date: 2011-10-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more