Skip to main content

Influence of the Physical, Structural and Chemical Properties on the Photoresponse Property of Magnetron Sputtered TiO2 for the Application of Water Splitting

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

The production of hydrogen from water (called "water splitting"), utilises sunlight as an energy source (solar-hydrogen) in a photoelectrochemical (PEC) solar cell, is a promising source of green energy. In this work, a PEC was used, for evaluating the photoactivity of a thin film TiO2 based photoanode by measuring photocurrent (which is comparable to hydrogen production rate by water splitting process in PEC). The main focus of this work is to study the effect of the TiO2 nanosurface and bulk properties on the photoresponse properties of the photoanode. The TiO2 coatings (360–400 nm) were deposited using a closed field reactive magnetron sputtering system. The structure and morphology of the TiO2 coatings were systematically altered by varying the deposition pressure between 5 × 10−4 to 1 × 10−2 mbar. The properties of the deposited nano-coatings were determined using Ellipsometry, SEM, AFM, profilometry, XPS, Raman and X-ray diffraction (XRD). Coating properties were correlated with the light absorption and photocurrent performance which were evaluated using UV-Vis spectroscopy and tri-electrode potentiostat measurements respectively. It was concluded from this study that the coating deposition pressure has a pronounced effect on the TiO2 photoanode properties leading to a significant enhancement in the photoactivity in PEC cell. Over a six fold increase in photocurrent at applied potential 0 V was observed for TiO2 photoanode prepared at 4 × 10−3 mbar as compared to 5 × 10−4 mbar. A correlation has been established between the deposition pressure, nano surface morphology and bulk properties, UV-Vis light absorbance and bandgap value, and the consequently higher (i) photocurrent density, (ii) negative flat band, and (iii) open circuit potential measured in Photoelectrochemical (PEC) cell.

Keywords: NM-THICK FILM; PHOTOCURRENT; SPUTTERING; TIO2; WATER SPLITTING

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.3458

Publication date: October 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
asp/jnn/2011/00000011/00000010/art00032
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more