Resistive Switching in Copper Oxide Nanorods: A Bottom Up Approach Applicable for Enhanced Scalability

$113.00 plus tax (Refund Policy)

Buy Article:


Reversible, stable and reproducible resistive switching in a parallel network of Cu2O nanorods, observed in the present study, highlights the advantages of using nanorods in comparison to normally used thin films. Unipolar and symmetric current–voltage characteristics of the metal/insulator/metal structure consisting of Hg top contact/Copper oxide (Cu2O) nanorods/Ag bottom contact in a sandwich configuration shows electroforming at about 11 V, reproducible reset and set points at 0.53 ± 0.03 and 4.2 ± 0.02 V and a high OFF/ON resistance ratio >103. Slope of current–voltage characteristics and current contrast in CAFM mapping indicate that filamentary conduction mechanism is responsible for resistive switching. This study sets the foundation for fabricating a nanorods based resistive random access memory device and thus a manifold increase in the device scalability.
More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more