Skip to main content

One-Step Synthesis and Flame Retardancy of Sheaf-Like Microcrystal Antimony Oxychloride

Buy Article:

$107.14 + tax (Refund Policy)

A mild and facile solution route has been developed for large-scale synthesis of sheaf-like antimony oxychloride Sb8O11Cl2 (H2O)6 microcrystal at room temperature. The morphologies and structures of the as-prepared products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A mechanism for the formation of the sheaf-like microstructure was tentatively proposed. The shape regulation was attributed to the capping mode of the PVP-directed antimony oxychloride crystal. The thermogravimetric and differential thermal analysis (TG/DTA) were employed to investigate thermal decomposition mechanism and temperature-dependent phase transition of antimony oxychloride Sb8O11Cl2 (H2O)6 in the air. The flammable property determined by the cone calorimeter showed excellent flame retardancy when applied this antimony oxychloride in poly (vinyl chloride) (PVC) polymer.

Keywords: ANTIMONY OXYCHLORIDE; CRYSTAL SPLITTING MECHANISM; FLAMMABILITY PROPERTY; SHEAF-LIKE

Document Type: Research Article

Publication date: 01 October 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content