Skip to main content

Understanding 'Clean-Up' of III–V Native Oxides During Atomic Layer Deposition Using Bulk First Principles Models

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

The use of III–V materials as the channel in future transistor devices is dependent on removing the deleterious native oxides from their surface before deposition of a gate dielectric. Trimethylaluminium has been found to achieve in situ 'clean-up' of the oxides of GaAs and InGaAs before atomic layer deposition (ALD) of alumina. Here we propose six reaction mechanisms for 'clean-up,' featuring exchange of ligands between surface atoms, reduction of arsenic oxide by methyl groups and desorption of various products. We use first principles Density Functional Theory (DFT) to determine which mechanistic path is thermodynamically favoured based on models of the bulk oxides and gas-phase products. We therefore predict that 'clean-up' of arsenic oxides mostly produces As4 gas. Most C is predicted to form C2H6 but with some C2H4, CH4 and H2O. An alternative pathway is non-redox ligand exchange, which allows non-reducible oxides to be cleaned-up.

Keywords: ALD; CLEAN-UP; GAAS; III-V; INGAAS; NATIVE OXIDES; TMA

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.5044

Publication date: September 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2011/00000011/00000009/art00108
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more