Skip to main content

Investigation of Substrate Influence on Tin Dioxide Nanostructures Synthesized Using Horizontal Furnace

Buy Article:

$113.00 plus tax (Refund Policy)


SnO2 nanostructures were directly synthesised by chemical vapour transport on different substrates in a horizontal furnace. The influence of substrate on the morphology of these nanostructures was investigated by changing the substrate type, coating, and temperature. The SnO2 nanowires and nanorods were one dimensional (1D) structures with widths and lengths of 50–200 nm and several micrometers respectively. Scanning electron microscope (SEM) images show formation of short nanorods with lengths of less than 1 μm on indium–tin oxide (ITO) substrates. The effect of substrate temperature on growth was studied. SnO2 nanowires were obtained using silicon substrate, and the effect of Au coating on the size and morphology of these structures was proposed. By coating the Si wafer with a thin layer of Au, the size of the nanostructure was reduced and the length increased. The differences in size and morphology are shown by transmission electron microscopy (TEM). X-ray diffraction (XRD) spectra show tetragonal structures for both substrates.


Document Type: Research Article


Publication date: 2011-09-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more