Skip to main content

BiFeO3 Films Doped in the A or B Sites: Effects on the Structural and Morphological Properties

Buy Article:

$113.00 plus tax (Refund Policy)


Metal-Organic Chemical Vapor Deposition (MOCVD) has been applied to the fabrication of BiFeO3 films undoped and doped with Ba or Ti on SrTiO3 (100) and YSZ (100) substrates. The films have been deposited using a multi-metal source, consisting of the Bi(phenyl)3, Fe(tmhd)3 and Ba(hfa)2┬Ětetraglyme or Ti(tmhd)2(O-iPr)2 (phenyl = −C6H5, H-tmhd = 2,2,6,6-tetramethyl-3,5-heptandione; O-iPr = iso-propoxide; H-hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione; tetraglyme = CH3O(CH2CH2O)4CH3) precursor mixture. The structural and morphological characterization of films has been carried out using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Chemical compositional studies have been performed by energy dispersive X-ray (EDX) analysis. Structural and morphological characterizations point to the formation of homo- geneous and flat surfaces for both undoped and doped BiFeO3 films.


Document Type: Research Article


Publication date: 2011-09-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more