Skip to main content

Relevance of Thermodynamic and Kinetic Parameters of Chemical Vapor Deposition Precursors

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

We have studied various metallorganic and organometallic compounds by simultaneous nonisothermal thermogravimetric and differential thermogravimetric analyses to confirm their volatility and thermal stability. The equilibrium vapor pressures of the metallorganic and organometallic compounds were determined by horizontal dual arm single furnace thermoanalyzer as transpiration apparatus. Antoine coefficients were calculated from the temperature dependence equilibrium vapor pressure data. The model-fitting solid-state kinetic analyses of Al(acac)3, (acac = acetylacetonato), Cr(CO)6, Fe(Cp)2, (Cp-cyclopentadienyl), Ga(acac)3, Mn(tmhd)3, and Y(tmhd)3 (tmhd = 2,2,6,6,-tetramethyl-3,5-heptanedionato) revealed that the processes follow diffusion controlled, contracting area and zero order model sublimation or evaporation kinetics. The activation energy for the sublimation/evaporation processes were calculated by model-free kinetic methods. Thin films of nickel and lanthanum-strontium-manganite (LSM) are grown on silicon substrate at 573 K using selected metallorganic complexes of Ni[(acac)2en], La(tmhd)3, Sr(tmhd)2 and Mn(tmhd)3 as precursors by plasma assisted liquid injection chemical vapor deposition (PA-LICVD). The deposited films were characterized by scanning electron microscopy and energy dispersive X-ray analysis for their composition and morphology.

Keywords: ACTIVATION ENERGY; ANTOINE COEFFICIENTS; METALLORGANIC AND ORGANOMETALLIC PRECURSORS; SOLID-STATE KINETICS; THERMOGRAVIMETRY; THIN FILMS

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.5098

Publication date: September 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
asp/jnn/2011/00000011/00000009/art00098
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more