Enhancement of Crystallinity and Optical Properties of Bilayer TiO2/ZnO Thin Films Prepared by Atomic Layer Deposition

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Bilayer and multilayer thin films are becoming increasingly important in the development of faster, smaller and more efficient electronic and optoelectronic devices. One of the motivations of applying bilayer or multilayer structures is to modify the optical properties of materials. Atomic layer deposition (ALD) is a variant of Chemical Vapour Deposition that can produce uniform and conformal thin films with well controlled nanostructures. In this study, we have demonstrated new findings of the use of ALD fabricated bilayer TiO2/ZnO thin films with enhanced crystallinity and optical properties. TiO2 films have been deposited at 300 °C for 1000 (51 nm in thickness) or 3000 (161 nm in thickness) deposition cycles onto glass and Si substrates. ZnO films are subsequently deposited on the TiO2 layers at 280 °C for 500 deposition cycles (55 nm). The crystallinity and optical properties of the TiO2/ZnO thin films have been analysed by X-ray diffraction, photoluminescence, UV-Vis spectroscopy, Atomic Force Microscopy and Scanning Electron Microscopy. XRD diffraction pattern confirmed the presence of ZnO with wutrtize crystal structure and TiO2 with anatase structure. It shows that the crystallinity of the TiO2 films has been improved with the deposition of ZnO. The intensity of UV luminescence has increased by almost 30% for TiO2/ZnO bilayer as compared to the single layer TiO2. The possible mechanism for the enhancement of the optical properties of bilayer TiO2/ZnO thin films will be discussed.

Keywords: ATOMIC LAYER DEPOSITION; BILAYER; OPTICAL PROPERTIES; THIN FILMS; TITANIUM OXIDE; ZINC OXIDE

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.5086

Publication date: September 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more