Skip to main content

A Study of Pyrolysis of Polymethylsiloxanes by Fourier Transform Infrared

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

This paper is dedicated to a comparative study of pyrolysis of decamethylcyclopentasiloxane and hexamethyldisiloxane, widely used as precursors for CVD of silicon dioxide films. The pyrolysis process was carried out in a hot-wall horizontal tube reactor made from quartz within the temperature range 25–1000 °C. FTIR spectroscopy has been used for the analysis of gaseous reaction products in the exhaust line of the reactor. It has been found that transformation of DMPSO was initiated by the open ring in the precursor molecules with its further transformation to linear biradicals followed by the chain's growth due to radical reactions. HMDSO transformation is connected with separation of silanon, silyl and methyl radicals with following multi-type interactions of siloxane radicals and formation of non-rigorously organized three-dimensional molecules.

Keywords: DMPSO; FTIR SPECTROSCOPY; HMDSO; PYROLYSIS; SILICON DIOXIDE FILMS

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2011.5082

Publication date: 2011-09-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more