Kinetics of SiHCl3 Chemical Vapor Deposition and Fluid Dynamic Simulations

Authors: Cavallotti, Carlo; Masi, Maurizio

Source: Journal of Nanoscience and Nanotechnology, Volume 11, Number 9, September 2011 , pp. 8054-8060(7)

Publisher: American Scientific Publishers

Buy & download fulltext article:

OR

Price: $113.00 plus tax (Refund Policy)

Abstract:

Though most of the current silicon photovoltaic technology relies on trichlorosilane (SiHCl3) as a precursor gas to deposit Si, only a few studies have been devoted to the investigation of its gas phase and surface kinetics. In the present work we propose a new kinetic mechanism apt to describe the gas phase and surface chemistry active during the deposition of Si from SiHCl3. Kinetic constants of key reactions were either taken from the literature or determined through ab initio calculations. The capability of the mechanism to reproduce experimental data was tested through the implementation of the kinetic scheme in a fluid dynamic model and in the simulation of both deposition and etching of Si in horizontal reactors. The results of the simulations show that the reactivity of HCl is of key importance in order to control the Si deposition rate. When HCl reaches a critical concentration in the gas phase it starts etching the Si surface, so that the net deposition rate is the net sum of the adsorption rate of the gas phase precursors and the etching rate due to HCl. In these conditions the possibility to further deposit Si is directly related to the rate of consumption of HCl through its reaction with SiHCl3 to give SiCl4. The proposed reaction mechanism was implemented in a 3D fluid dynamic model of a simple Siemens reactor. The simulation results indicate that the proposed interpretation of the growth process applies also to this class of reactors, which operate in what can be defined as a mixed kinetic-transport controlled regime.

Keywords: AB INITIO; CHEMICAL VAPOR DEPOSITION; FLUID DYNAMICS; SIEMENS PROCESS; SIHCL3; SILICON; TRICHLOROSILANE

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.5029

Publication date: September 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page