Enhanced Mechanical Properties of Electrospun Nano-Fibers Through NaCl Mediation

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Electrospun (ES) nano-scale polymer fibers are known to exhibit lower Young's modulus and strength than their bulk counterpart. We have discovered that minute additions of sodium chloride (NaCl) during the preparation stage of ES polymethyl methacrylate (PMMA) fibers raises the fiber mechanical properties in a significant way, nearly up to bulk values, over a range of diameters. NaCl-induced electrical effects leading to enhanced molecular alignment during nano-fiber formation is the most likely explanation for this synergistic effect. Moreover, beyond the now-recognized rise in Young's modulus values, we observed that the strength and tensile toughness of the ES fibers also significantly increase at progressively smaller diameters.

Keywords: ELECTROSPUN PMMA NANOFIBERS; MECHANICAL PROPERTIES; NACL MEDIATION; SIZE EFFECT

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.4760

Publication date: September 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more