Skip to main content

Synthesis and Morphological Control of Europium Doped Cadmium Sulphide Nanocrystals

Buy Article:

$105.00 plus tax (Refund Policy)

Europium doped cadmium sulphide (Cd0.98Eu0.2S) nanostructures were synthesised by chemical co-precipitation method using ethylene glycol (EG) and deionized water (Eu:CdS-1), and isopropyl alcohol (IPA) and deionized water (Eu:CdS-2) as mixed solvents. It has been found that the nanostructure of the europium doped CdS can be controlled by simply varying the mixed solvent system. Powder XRD pattern reveals the formation of hexagonal (wurtzite) and cubic (zinc blende) structure for Eu:CdS-1, and Eu:CdS-2, respectively. The crystallite size of the sample prepared using IPA and deionized water was measured to be 2.64 nm which is much smaller than that of the sample prepared using EG and deionized water as mixed solvent (3.65 nm). Morphology of the materials can also be changed from flower shaped crystals to paddy like structures by varying the mixed solvents. Band gap values of Eu3+ doped CdS nanocrystals synthesized from two different solvents were estimated using UV-reflectance spectra. The size and crystallinity of the samples were confirmed by HRTEM and SAED analysis. A significant change in the PL emission of the CdS nanocrystals was observed for the europium doped CdS which is mainly due to the presence of Eu3+ ions which also play a significant role in the energy transfer process. It was also observed that the shift in the emission and efficiency depends on size and shape of the synthesised nanoparticles.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: EU DOPED CDS; HRTEM; ICP; NANOSTRUCTURES; PHOTOLUMINESCENCE

Document Type: Research Article

Publication date: 2011-09-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more