Skip to main content

Grain Size and Film Thickness Effect on the Thermal Expansion Coefficient of FCC Metallic Thin Films

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Thin films are used in wide range of applications in industry, such as solar cells and LEDs. When thin films are deposited on substrates, various stresses are generated due to the mechanical difference between the film and substrate. These stresses can cause defects, such as cracking and buckling. Therefore, knowledge of the mechanical properties is important for improving their reliability and stability. In this study, the thermal expansion coefficient of FCC metallic thin films, such as Ag and Cu, which have different grain sizes and thicknesses, were calculated using the thermal cycling method. As a result, thermal expansion coefficient increased with increasing grain size. However, the film thickness had no remarkable effect.

Keywords: FCC METALLIC THIN FILM; FILM THICKNESS; GRAIN SIZE; THERMAL CYCLING; THERMAL EXPANSION COEFFICIENT

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2011.4776

Publication date: 2011-08-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more