Skip to main content

Synthesis of Air Stable Iron Nanopowders with Various Methods

Buy Article:

$113.00 plus tax (Refund Policy)

Magnetic properties and microstructures of iron-based nanopowders fabricated by several methods, such as sol–gel, thermal decomposition, and self-propagating combustion methods, were investigated. During a subsequent reduction annealing, added aluminum atoms formed coherent oxide shells with a hercynite structure around iron cores in all the nanopowders. In particular, the nanopowders synthesized by the self-propagating combustion method showed the highest saturation magnetization of 175.68 emu/g and oxidation stability to 200 °C in air.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: ANTIOXIDANT SHELL; CORE-SHELL; IRON NANOPOWDER; SOFT MAGNET

Document Type: Research Article

Publication date: 2011-08-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more