Skip to main content

Fabrication and Radio Frequency Characterization of Carbon Nanotube Field Effect Transistor: Evidence of Quantum Capacitance

Buy Article:

$113.00 plus tax (Refund Policy)


We fabricated an radio frequency (RF) carbon nanotube field effect transistor (CNTFET) whose electrode shapes were standard RF designed ground-signal-ground (GSG)-type pads. The S-parameters measured from our RF CNTFET in the frequency range up to 6 GHz were fitted with an RF equivalent circuit, and the extracted gate capacitance was shown to be the capacitance value of the series combination of the electrostatic capacitance and the quantum capacitance. The effect of the channel resistance and the kinetic inductance was also discussed.


Document Type: Research Article


Publication date: August 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more