If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Characterization of Luminescence Properties of V2O5-Capped ZnSe Nanowires

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

ZnSe-core/V2O5-shell nanowires were synthesized by the thermal evaporation of ZnSe powders on gold–coated Si (100) substrates followed by the sputter depositon of V2O5. Scanning electron microscopic images showed that the core–shell nanowires were a few tens to a few hundreds of nanometers in diameter and a few hundreds of micrometers in length. Transmission electron microscopy and X-ray diffraction analyses revealed that the core and shell of the core–shell nanowires were single crystal wurtzite-structured ZnSe and amorphous V2O5 respectively. Photoluminescence measurement showed that the core–shell nanowires as-synthesized or annealed in an oxidative atmosphere had a green emission band centered at around 520 nm whereas the as-synthesized ZnSe nanowires and the ZnSe-core/V2O5-shell nanowires annealed in a reducing atmosphere had a yellow emission band centered at around 590 nm. Our results also showed that V2O5 capping with an optimal thickness and subsequent annealing in a reducing atmosphere could significantly enhance the emission intensity of the ZnSe nanowires. In addition, the origins of the enhancement in intensity and the blue shift of the major emission by V2O5 capping are discussed.

Keywords: BLUE-SHIFT; PHOTOLUMINESCENCE; TEM; THERMAL EVAPORATION; ZNSE/V2O5 CORE-SHELL NANOWIRES

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.4833

Publication date: August 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more