Skip to main content

Controlling of the Electrical Resistivity of GaN Layer Using AlN Nucleation Layer

Buy Article:

$113.00 plus tax (Refund Policy)


The sheet resistance (Rs) of undoped GaN films on AlN/c-plane sapphire substrate was investigated. The Rs was strongly dependent on the AlN layer thickness and semi-insulating behavior was observed. To clarify the effect of crystalline property on Rs, the crystal structure of the GaN films has been studied using X-ray scattering and transmission electron microscopy. A compressive strain was introduced by the presence of AlN nucleation layer (NL) and was gradually relaxed as increasing AlN NL thickness. This relaxation produced more threading dislocations (TD) of edge-type. Moreover, the surface morphology of the GaN film was changed at thicker AlN layer condition, which was originated by the crossover from planar to island grains of AlN. Thus, rough surface might produce more dislocations. The edge and mixed dislocations propagating from the interface between the GaN film and the AlN buffer layer affected the electric resistance of GaN film.


Document Type: Research Article


Publication date: August 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more