Impact of Drift Gap, N-Layer, and Deep N+ Sinker on Breakdown Voltage and Saturation Current of Lateral Double-Diffused Metal Oxide Semiconductor Transistor

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

In this paper, we discuss on the optimal design of a High-Side n-channel Lateral Double-diffused Metal Oxide Semiconductor Field Effect Transistor (LDMOSFET) whose breakdown voltage is over 100 V with 0.35 μm Bipolar-CMOS-DMOS (BCD) process. The proposed nLDMOSFET has been fabricated and tested in order to confirm the features of a deep N+ sinker and a gap of between the drift region (DEEP N-WELL) and the center of the source. The surface is implanted by the N-layer for high breakdown voltage and simultaneously the low specific on-resistance. The computer simulation of the proposed High-Side LDMOS exhibits BVdss of 115 V and Ron, sp of as low as 2.20 mΩ·cm2, which is consistent with the experimental results.

Keywords: BCDMOS; HIGH-SIDE; LDMOS; RESURF

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.4848

Publication date: August 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more