Skip to main content

Biodegradable Particulate Delivery of Vascular Endothelial Growth Factor Plasmid from Polycaprolactone/Polyethylenimine Electrospun Nanofibers for the Treatment of Myocardial Infarction

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

In this study, we present nanofiber-mediated gene delivery for myocardial infarction (MI). Branched polyethylenimine cross-linked via disulfide bonds (ssPEI) complexed with vascular endothelial growth factor (VEGF) were immobilized on electrospun polycaprolactone (PCL)/polyethylenimine (PEI) nanofibers for the local expression of VEGF angiogenic factor. We studied whether the production of VEGF from myoblast cells adhering on the nanofibers has therapeutic potential for MI. In this method, the non-specific adsorption of VEGF nanoparticles to the nanofibers occurred uniformly over all of the surface area of the nanofibers, resulting in increased transgene uptake and expression in a great number of cells. The amount of DNA required for transfection was also minimal compared to bolus delivery, because the adhered DNA was directly available in the cell microenvironment, which also helps in localized delivery. Reporter genes luciferase (Luc), red fluorescence protein (RFP), and therapeutic gene VEGF were tested to evaluate the transfection efficiency of ssPEI nanoparticles immobilized on the nanofiber surface. Our results demonstrated that the delivery of therapeutic genes from biodegradable nanoparticles immobilized on the nanofiber represented minimal cytotoxicity of H9C2 myoblasts than branched PEI 25 kDa did. According to Luc assay, fluorescence microscope analysis, and reverse transcription polymerase chain reaction (RT-PCR), this vector showed high transgene expression efficiency to the reporter gene and VEGF gene. The surface-mediated delivery of the DNA nanoparticles did not adversely affect cell growth, and facilitated the transgene expression inside the cells.

Keywords: NANOFIBER; SSPEI; SURFACE-MEDIATED DELIVERY; VASCULAR ENDOTHELIAL GROWTH FACTOR

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.4862

Publication date: August 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2011/00000011/00000008/art00066
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more