Skip to main content

Humidity Sensing Performance of In-Situ Fabricated Cu/Cu2O/Cu2S-Polymer Nanocomposite via Polyphenylene Sulphide Cyclisation Route

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

We herein report the feasibility of novel polymer-inorganic solid state reaction route for simultaneous in situ generation of Cu2S and Cu nanostructures in polymer network. Polyphenylene Sulphide (PPS) which is engineering thermoplastic acts as chalcogen source as well as stabilizing matrix for the resultant nano products. Typical solid state reaction was accomplished by simply heating the physical admixtures of the two reactants i.e., copper acetate and PPS by varying molar ratios mainly 1:1, 1:5, 1:10, 1:15, 1:20 at the crystalline melting temperature (285 °C) of PPS. The synthesized products were characterized using various physicochemical characterization techniques like X-ray Diffractometry, Field emission Scanning Electron Microscopy, Transmission Electron Microscopy, UV-Visible spectroscopy and X-ray photoelectron spectroscopy. The prima facie observations suggest occurrence of nanocrystalline Cu2S in case of product obtained with equimolar ratio, whereas remaining samples show mixture of Cu and Cu2O. The TEM analysis reveals nanoscale polydispersity (5–60 nm) and prevalence of mainly spherical morphological features in all the cases with occasional indications of plate like and cubical morphological features depending upon the molar ratio of the reactants. The humidity sensing characterization of these nanocomposites was also performed. The resistivity response with the level of humidity (20 to 70% RH) was compared for these nanocomposites. The linear response is obtained for all the samples. The sensitivity of 1:1 molar ratio sample was found to be maximum among all the samples.

Keywords: CU; CU2O; CU2S; HUMIDITY SENSING; NANOCOMPOSITES

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.4254

Publication date: August 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more