Skip to main content

Self-Assembled InAs/GaAs Quantum Dots Covered by Different Strain Reducing Layers Exhibiting Strong Photo- and Electroluminescence in 1.3 and 1.55 μm Bands

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

The effect of different InGaAs and GaAsSb strain reducing layers on photoluminescence and electroluminescence from self-assembled InAs/GaAs quantum dots grown by metal-organic vapour phase epitaxy was investigated. The aim was to shift their luminescence maximum towards optical communication wavelengths at 1.3 or 1.55 μm. Results show that covering by InGaAs strain reducing layer provides stronger shift of photoluminescence maximum (up to 1.55 μm) as compared to GaAsSb one with similar strain in the structure. This is caused by the increase of quantum dot size during InGaAs capping and reduction of quantum confinement of the electron wave function which spreads into the cap. Unfortunately, the weaker electron confinement in quantum dots is a reason of a considerable blue shift of electroluminescence from these InGaAs structures since optical transitions move to InGaAs quantum well. Although strong electroluminescence at 1300 nm was achieved from quantum dots covered by both types of strain reducing layers, the GaAsSb strain reducing layer is more suitable for long wavelength electroluminescence due to higher electron confinement potential allowing suppression of thermal carrier escape from quantum dots.

Keywords: ELECTROLUMINESCENCE; GALLIUM ARSENIDE; INDIUM ARSENIDE; METALORGANIC VAPOUR PHASE EPITAXY; PHOTOLUMINESCENCE; QUANTUM DOTS

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.4223

Publication date: August 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
asp/jnn/2011/00000011/00000008/art00021
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more