Skip to main content

The Synergistic Effect of Aligned Nanofibers and Hyaluronic Acid Modification on Endothelial Cell Behavior for Vascular Tissue Engineering

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

The endothelialization of tissue-engineered vascular grafts (TEVGs) is considered to be an effective strategy to prevent the coagulation and restenosis of small-diameter vascular grafts. In this study, we fabricated well aligned nanofibrous scaffolds with PCL using a high speed rotating collector, modified those surfaces with hyaluronic acid (HA) and studied the synergistic effect of the scaffolds on the endothelial cells behavior in vitro. The well-aligned oriented architecture was observed by SEM images in the nanofibrous scaffolds. The contact angle measurements and FTIR-ATR evidenced that HA was successfully modified on the PCL nanofibrous scaffolds and hydrophilicity of the scaffolds was increased after HA coating. The results of adhesion and morphology of human umbilical vein endothelial cells (HUVECs) showed that the HA-coating aligned PCL (HA-aPCL) nanofibrous scaffolds could highly promote attachment and guide HUVECs bipolar spread with the parallel aligned nanofibers. Furthermore, HUVECs on the HA-aPCL formed a confluent monoendothelial cell layer and exhibited superior protein expression levels of von Willebrand factor (vWF). This study suggested that the combination of aligned nanostructure and HA modification was more capable of promoting the regeneration of functional endothelium for vascular tissue engineering than individual use.

Keywords: ALIGNED NANOFIBERS; ENDOTHELIALIZATION; HYALURONIC ACID MODIFICATION; TISSUE-ENGINEERED VASCULAR GRAFT

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.4750

Publication date: August 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2011/00000011/00000008/art00011
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more