Skip to main content

Pressure-Dependent Dissipation Effect at Multiple Cantilever Resonant Modes

Buy Article:

Your trusted access to this article has expired.

$105.00 plus tax (Refund Policy)

Based on the optical deflection method, the resonant characteristics of a microcantilever under various pressure have been observed at room temperature to understand the pressure-dependent dissipation effect. Especially, the quality factor of the cantilever has been measured for up to fourth harmonic mode of cantilever resonance as a function of pressure between 0.1 and 1000 Torr. By considering the intrinsic dissipation present in the system at 0.1 Torr, the pressure-dependent fluidic quality factors were determined for the multiple cantilever resonant modes. The inverse of the fluidic quality factor appears to follow two different asymptotic behaviors at high and low pressure limits, which indicates that the dynamics of the fluid, due to the oscillating cantilever, changes from Newtonian to non-Newtonian with decreasing pressure. The experimentally observed transition of the fluidic dissipation effect agrees well with the recently proposed rapidly oscillating flow model based on the Boltzmann equation, regardless of the different mode shapes.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: DISSIPATION; FLUIDIC QUALITY FACTOR; MICROCANTILEVER; WEISSENBERG NUMBER

Document Type: Research Article

Publication date: 01 July 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more