Skip to main content

A Triazine Bridged p-Phenylenevinylene Polymer Film for Biomolecular Patterning

Buy Article:

$113.00 plus tax (Refund Policy)


Photo-reaction by UV irradiation of a highly fluorescent s-triazine bridged p-phenylenevinylene polymer resulted in micro and submicron fluorescent pattern because carbonyl group (C=O) was generated from vinylene group (C=C) through the photo-oxidation. This fluorescent pattern could be used for micro scale cell patterning as well as submicron scale biomolecules patterning such as proteins. When exposed to a solution containing biomolecules, the polymeric patterns were selectively coated with biomoleucles, to result in biomolecular patterns. In particular, the UV exposed area of the poly[4,6-bis(phenoxy)-2-diphenylamino-s-triazine]co(2,5-bis(trimethylsilyl)-1,4-phenylenevinylene) (DTSPV) patterns was highly selective toward fluorescein isothiocyanate (FITC) conjugated–collagen. These studies provide an exciting opportunity for tissue engineering and fundamental understanding of the mechanisms of cellular adhesion, proliferation, and differentiation.


Document Type: Research Article


Publication date: 2011-05-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more