Skip to main content

Bias Stress Effects on Different Dielectric Surfaces of Pentacene Thin-Film Transistors

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

In this paper, it was demonstrated that pentacene thin-film transistors (TFTs) were fabricated with an organic adhesion layer between an organic semiconductor and a gate insulator. In order to form polymeric film as an adhesion layer, a vapor deposition polymerization (VDP) process was introduced to substitute for the usual spin-coating process. Field effect mobility, threshold voltage, and on/off current ratio in pentacene TFTs with a 15 nm thick organic adhesion layer were about 0.4 cm2/Vs, −1 V, and 106, respectively. We also demonstrated that threshold voltage strongly depends on the stress time when a gate voltage has been applied for bias stress test. We suggest that a polyimide adhesion layer fabricated by the VDP method can be applied to realize organic TFTs with long-term stability because of lower threshold voltage shifts due to reduced charge trapping at the interface between the pentacene semiconductor and the polyimide layer.

Keywords: ADHESION LAYER; HYSTERESIS; PENTACENE THIN FILM TRANSISTORS; THRESHOLD VOLTAGE SHIFT

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2011.3651

Publication date: 2011-05-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more