Skip to main content

Optical and Electrical Properties of Merocyanine Dye LB Films by Various Time of UV Irradiation and Heat Treatment

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

The Langmuir-Blodgett (LB) technique provides many possibilities for the control of film thickness, dimensions, and molecular structures on the nanometer scale. Various kinds of dye molecules have been found to form the J-aggregation which has been used as sensitizers of silver halide photography for long time. In recent years, they attract attention as model systems for investigating the ultra-fast exciton dynamics, materials for ultra-fast nonlinear optical devices, fluorescence probes for mitochondrial membranes. We fabricated the merocyanine dye LB films with arachidic acid (AA). In order to observe the J-aggregation of the merocyanine dye LB films, CdCl2 and KHCO3 solutions were added in subphase. From the optical absorption spectra of the mixed dye LB films (6Me–Ds:AA = 1:2) at different layers, the optical absorption peak was about 520 nm. However, the optical absorption peak of the LB films was shifted to 600 nm, when CdCl2 and KHCO3 solutions were added. This is the consequence result to the J-aggregation of the merocyanine dye. We also investigated the optical absorption peak of the LB films according to various time at 60 °C and 275 nm UV. We measured the STM morphology of the merocyanine dye LB film (1 layer) before UV irradiation and heat treatment. The morphology size of the LB film on HOPG was 5 nm. The roughness and molecular size were about 66.163 pm and 0.176 nm, respectively. The J-aggregation of this type was also accompanied by large morphological changes. We analyze the morphology and electrical properties of the LB films by the scanning tunneling microscopy (STM).

Keywords: HEAT TREATMENT; LB FILMS; MEROCYANINE DYE; STM; UV IRRADIATION

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.3646

Publication date: May 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2011/00000011/00000005/art00082
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more