Skip to main content

Electrochemical Behaviors of Double-Walled Carbon Nanotubes Encapsulating Ferrocene

Buy Article:

$105.00 plus tax (Refund Policy)

Electrochemical properties of a novel nanohybrid material, ferrocene-filled double-walled carbon nanotubes ([email protected]), have been successfully investigated for the first time by preparing different kinds of [email protected] modified glassy carbon electrodes. One pair of surface-confined redox waves corresponding to the couple of Fc/Fc+ is obtained, indicating Fc encapsulated in DWNTs retains electrochemical activity. Significantly differing from those of ferrocene-filled single-walled carbon nanotubes ([email protected]), [email protected] shows a specific electrochemical behavior, typically exhibiting thin-layer electrochemical characteristics at low scan rates, whereas diffusion-confined characteristics at high scan rates. The results indicate that the novel nanohybrid material possessing excellent electrochemical properties may have possible applications in constructing specific chemical and biological sensors.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 01 May 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more