Skip to main content

Deep and Alignment Free Patterned Etching of GaN Surface Using an Atomic Force Microscope

Buy Article:

$105.00 plus tax (Refund Policy)

Successful deep and alignment-free patterned etching on GaN using atomic force microscope (AFM) local oxidation followed by in-situ chemical etching is demonstrated. Oxide ridges are grown on GaN on an AFM by applying positive sample bias at 80% humidity, with the oxidation reaction expedited by UV light. The oxide ridges are then etched by HCl solution, leaving troughs in the GaN surface. A dripping strategy for the in-situ chemical etching is recommended that allows deep, alignment-free multiple AFM oxidation/etching works on the GaN surface without any need of substrate removal from the AFM platform. Repeated etching followed by AFM oxidation on a spot on a GaN surface resulting in a hole as deep as 800 nm was also demonstrated. Further, a preliminary evaluation of the porosity of the AFM-grown oxide indicates that the oxide ridges grown on GaN at an AFM cantilever moving speed of 300 nm/s are porous in structure, with an estimated porosity of 86%, which porosity could be reduced if longer resident time of the AFM cantilever on the target oxidation region was used.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: ATOMIC-FORCE MICROSCOPY; GAN; LIGHT-EMITTING DIODES; LOCAL OXIDATION; NANO-ETCHING

Document Type: Research Article

Publication date: 2011-05-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more