Skip to main content

Optimization of Tribological and Mechanical Properties of Nanocomposites of Polyurethane/Poly(vinyl acetate)/CaCO3

Buy Article:

$105.00 plus tax (Refund Policy)

Properties of samples containing polyurethane (PU), poly(vinyl acetate) (PVAc) and nanosize particles of calcium carbonate (CaCO3) are correlated with concentrations of these components. Interphase phenomena in PU/PVAc/CaCO3 nanohybrids have been studied before, we focus here on wear and scratch resistance. In addition to polymer blends containing CaCO3, the effects of adding CaCO3 with grafted PVAc, and CaCO3 with grafted silane and PVAc in varying ratios are also evaluated. For blends that do not contain the filler, a hypothesis explaining the concentration dependence of friction called the Bump Model is advanced and supported by the experimental results. In particular, we explain how creating a blend containing only 10% of a second polymer results in a dramatic drop of friction of the majority polymer. In single scratch testing, above 3% the filler displays 'its own' resistance to scratching. Chemical modification of the filler results in shallower residual depths—a consequence of improved interaction of the filler with the polymeric matrix. In sliding wear determination, strain hardening is seen for blends as well as for filler-containing composites. In tensile testing, addition of an unmodified filler increases the elongation at break and thus lowers the brittleness; the effect is even larger for chemically modified fillers.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2011-05-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more