Skip to main content

Fabrication and Interfacial Electronic Structure Studies on Polypyrrole/TiO2 Nano Hybrid Systems for Photovoltaic Aspects

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

The progress in studying the interfacial electronic structures of the developing new class of hybrid organic/inorganic material systems have envisaged a new dimension into the field of photovoltaics, which could be of great help in understanding the nature of charge transfer in them. In this regard, electropolymerization of pyrrole monomers have been carried out at room temperature on the surface of TiO2 working electrodes (assisted by UV radiations) and their interfacial electronic structure has been studied as a function of the applied photo anodic potentials. The formation of polypyrrole deposits has been ensured using FT-IR and Raman spectroscopy. Surface analysis of the hybrid matrix revealed the tendency of polymer molecules to cover up the spherical surface of TiO2 nanoparticles that could help in improving the light absorption rate. Signals (bands) corresponding to pyrrole molecules observed in the ultraviolet photoelectron spectroscopy measurements have been correlated with the polaronic states formed and identified to shift as a function of the applied photo anodic potentials, revealing the decrease in work function of the hybrid system to take place (confirmed using cyclic voltammetry measurements). The decreasing trend in the work function elucidates the adjustment in electronic structure of the system (hybrid materials possessing smaller work functions are generally preferred for photovoltaic studies). The aforementioned behavioural aspects have been reasoned with the increase in overpotential values for polarization, from the decrease in up-take rate of the anionic dopant, which increases the current density values, thereby modifying the conductivity of the systems.

Keywords: ELECTROPOLYMERIZATION AND ELECTRONIC STRUCTURE; POLYPYRROLE; TIO2

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.3873

Publication date: May 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2011/00000011/00000005/art00017
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more